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Dedicated to the author’s teacher Professor Buchin Su

Let M be a connected, simply connected, compact Riemannian n-manifold
without boundary, n > 2, such that for any m € M, the cut locus of m in M
is a single point. It is known that M is diffeomorphic to the n-sphere S”. (This
fact is not used in the present paper.) Moreover, every geodesic returns to its
beginning point and is smoothly closed. Following Green [2], we call M a
wiedersehen n-manifold.

It is easily seen that in M, all closed geodesics are of the same length, say
2mr, r > 0. Whether M is isometric to a euclidean n-sphere S;" of radius r is
usually referred to as the Blaschke problem (for spheres).

Recently, Berger [1] made use of an inequality given by Kazdan [3] to
prove that

vol M > vol S/,

and that the equality holds iff M is isometric to S;. On the other hand,
Weinstein [4] has proved the following result. If M is a connected compact
Riemannian n-manifold in which all geodesics are smoothly closed and have
the same length, say 27r, if UM is the space of unit tangent vectors of M, CM
is the space of (oriented) closed geodesics in M, « is the Euler class of the
natural circle fibration 7: UM — CM, and CM is so oriented that the value
{a" 1, [CM]> of a" ! at the fundamental class [ CM] is positive, then
2vol M = <{a""!,[CM]) vol S

Therefore the evaluation of vol M depends only on that of {a"~!, [CM]}. It
is remarked in [4] that, when n is even, {a""!,[CM]> = 2. Hence for any
evenn > 2,vol M = vol S, and thus M and S, are isometric.

The purpose of this paper is to show that for any odd n > 1, (a"~ !, [CM])
= 2 remains valid and hence M and S, are isometric. The Blaschke problem
(for spheres) is thus completely solved.
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Throughout this paper, M denotes a connected compact Riemannian
n-manifold (without boundary), n > 1, in which all geodesics are smoothly
closed and have the same length, UM denotes the space of unit tangent
vectors of M, and CM denotes the space of (oriented) closed geodesics in M.
It is clear that UM is a smooth (2n — 1)-manifold, CM is a smooth (2n — 2)-
manifold, and there are a natural smooth (n — 1)-sphere fibration p: UM —
M and a natural smooth circle fibration #: UM — CM such that for any
v € UM, v is the unit tangent vector of 7v at pv.

Lemma 1. Assume that M has the integral cohomology groups of the
n-sphere. Then the integral cohomology groups of UM and CM are given as
follows. If n is even (> 2), then

Z fork=0,2n—-1,
HYUM)=12Z, fork=n,
0 otherwise;

HY(CM) = {Z fork=0,2,4---,2n—-2,
0  otherwise.
Moreover, the homomorphism H*~*(CM)— H*(CM), appearing in the Gysin
sequence of w: UM — CM, is an isomorphism for k=0, 2,- - n—2,
n+2,---,2n— 2, and is a monomorphism of cokernel Z, for k = n. If n is

odd (> 1), then

Hk(UM)={Z fork =0,n—1,n2n-—1,
0  otherwise;

zZ fork=0,2,4,--- ., n—3,n+1,---,2n-2,
HYCM)=31Z®Z fork=n-1,

0 otherwise.

Moreover, there are exact sequences
0— H" 3(CM)— H" Y(CM) - H*\(UM) -0,
0—- H"(UM) - H" '(CM)—> H"*(CM) = 0,

which are parts of the Gysin sequence of w: UM — CM.

Proof. The result is well-known and is included here for the sake of
completeness and reference.

Since M has the integral cohomology groups of the n-sphere it is orientable.
Therefore the Gysin sequence of p: UM — M, i.e.,

o (M) VS 5 S HA (UMY > HE (M) > - - -
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is exact, where a(p) is the Euler class for p: UM — M. We know that a(p) is
equal to O or the double of the fundamental class of M according as n is odd
or even. Hence it is easy to compute H*(UM) as asserted.

From the homotopy sequence of #: UM — CM, it is seen that 7,: 7, (UM)
— 7,(CM) is surjective. Therefore, by Hurewicz’s theorem, #,: H,(UM)—
H,(CM) is surjective. Hence H,(CM) = 0 and consequently CM is orienta-
ble. Because of this fact, the Gysin sequence of 7: UM — CM, i.e.,

coo o HYCM) S HY(CM) D HH(UM) - H*-Y(CM) > - - -

is exact, where a is the Euler class for #: UM — CM. Now it is easy to
compute H*(CM) and to verify asserted properties of H*(CM).

As an immediate consequences of Lemma 1, we have

Lemma 2. For any even n > 2, if M has the integral cohomology groups of
the n-sphere, then {a"~ ', [CM]> = 2.

Now we are in a position to examine whether Lemma 2 remains valid for
any odd n > 2. Hereafter, we let n = 2m + 1, where m is an integer > 1.
Also we assume that M has the following properties. First, M has the integral
cohomology groups of the 2m + 1)-sphere. Secondly, there is a point y of M
such that any closed geodesic in M does not have y as a point of self-intersec-
tion. Notice that the second property is clearly satisfied by any wiedersehen
manifold.

It is easily seen from Lemma 1 that forany k=1,---,m— 1, a*is a
generator of H*(CM), and that if b is an element of H?"(CM) such that
7*b is a generator of H*"(UM), then {b, a™)} is a basis of H?"(CM). In the
following, we shall find a specified » which enables us to compute
(a®™, [CM ).

Lemma 3. Let a be a generator of the image of H*™*(UM)— H*"(CM)
(see Lemma 1). Then

aua=2g

for some generator g of H*™(CM).

Instead of proving Lemma 3, we prove its dual which is given in terms of
integral homology groups as follows.

Lemma 3. Let a* be a generator of the image of =, H,, (UM)—
H,, (CM). Then CM can be so oriented that a* N a* = 2.

Proof. By hypothesis, there is a point y of M such that any closed
geodesic in M does not have y as a point of self-intersection. Such a point y
has a neighborhood ¥ such that for any v € pY, pr~'av N V is a single
open arc containing y. Then it is easily seen that 7 'mp™ N p™'(V — {»})
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contains exactly two components, each of which is mapped homeomorphi-
cally onto V' — {y} by p. Notice that if C is one of the components, then the
other component if {-v|v € C}.

Let z be a point of V different from y, and let ¥ be an oriented closed
geodesic in M passing through both y and z. Then

a7y N a7z = {y, -v}.
Let p7ly and p~'z be oriented so that they represent the same generator of
H,,(UM). Then we may let mp~'y and #p~'z be 2m-cycles representing a*.
Therefore we have only to show that CM can be so oriented that the
intersection number of #p~y and #p~ 'z is equal to 1 at both y and —v.
Consider the 2m-sphere bundle

pp (V= {yH->V-{»}
Since p~'z is a fibre of the 2m-sphere bundle and since each of the two
components of 7 'mp~y N p~'(V — {y}) is a cross-section, it follows that
7 lap~Yy and p~'z intersect at exactly two points, and the intersection number
at either point is equal to 1 or —1. Hence the intersection number of #p~'y and
7p~'z at each of y and —y is equal to 1 or —1.
Let
AtUM > UM, N:CM->CM
be the involutions defined by

Ap) = -0, N(§) = £
Then
M < um I cMm

R

M < UM > M

is commutative. Since M is odd-dimensional, A is orientation-reversng so that
A’ is orientation-preserving. Therefore the intersection number of #p~y and
ap~'z at —y = X'y is equal to that of A’ap~"y and A’#p~'z at y and thus is equal
to that of mp~Yy and #p~'z at y. Hence the proof is complete.

Lemma 4. There is a basis {b, a™)} of H*"(CM) such that if a and g are as
in Lemma 3, then

@ aub=g,

(i) a=2b— a™.

Proof. Since the exact sequences

0— H>""%(CM) - H*(CM) - H>(UM) - 0,

0 H>*2(CM) « H*(CM) « H**(UM) <0
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are dual to each other, there is an element b of H*"(CM) such that
aub=g,
and {b, a™)} is a basis of H>™(CM).
Let

a= fb+ ya™,

where 8 and vy are integers. We know from Lemma 3 that
aUa=2g auUa=040.
Therefore
2g=a U (pb+ ya™) = Pg,

so that 8 = 2. Hence

a=2b+ ya™.

Since
g=aub=0Q2b+ ya™)Ub=2(bU b)+ y(a™ U b),

it follows that y is odd, say y = 2k — 1. Let

b'=b + ka™.
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Then {&', @™} is a basis of H*"(CM) such that a U b’ = g and a = 2b" —

a™. Hence our assertion follows by using 4’ in place of 5.
Lemma 5. {(a®", [CM]) = 2.

Proof. Let {b, a™)} be the basis of H*"(CM) given in Lemma 4. Then

bub=rg
for some integer r. Since
bua"=bU(2b—a)=2r—-1)g,
a” ya”=02b—a)u (2b —a) = (4r - 2)g,
it follows from Poincaré duality that
bub [CM]) bua™ [CM])
(@™ U b, [CM]> <a™uU a™ [CM])

r 2r—1
2r—1 4r-2

=2r—1.

Therefore r = 0 or 1 so that {(e*",[CM])> = * 2. Since CM is so oriented

that {a®", [CM]} is positive, our assertion follows.
Combining Lemmas 2 and 5 and Weinstein’s theorem [4], we have

Theorem 1. Let M be a connected compact Riemannian n-manifold without
boundary, n > 2, which has the integral cohomology groups of the n-sphere and
in which all geodesics are smoothly closed and have the same length, say 2ar. If
n is odd, it is also assumed that there is a point of M which is not a point of
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self-intersection of any closed geodesic in M. Then the volume of M is equal to
that of a euclidean n-sphere of radius r.

Since wiedersehen n-manifolds satisfy the hypothesis of Theorem 1, Theo-
rem 1 and results of Berger [1] and Kazdan |3] yield

Theorem 2. Any wiedersehen n-manifold is isometric to a euclidean sphere.
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